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ABSTRACT 

Bayesian networks have been applied to many different domains in order to 

perform prognostics, reduce risk and ultimately improve decision making.  

However, these methods have not been applied to military ground vehicle field data 

sets.  The primary objective of this study is to illustrate how Bayesian networks can 

be applied to a ground vehicle data set in order to predict potential downtime.  The 

study generated a representative field data set, along with tabu search, in order to 

learn the network structure followed by quantification of link probabilities.  The 

method is illustrated in a case study and future work is described in order to 

integrate the method into a real-time monitoring system.  The study yielded a highly 

accurate prediction algorithm that can improve decision making, reduce downtime 

and more efficiently manage resources in the ground vehicle community. 

 
INTRODUCTION 

The current and anticipated acquisition climate, 

along with decreasing budgets are resulting in 

military ground vehicles remaining in service 

longer than originally anticipated.  These systems 

must continue to operate safely, effectively and in 

a cost-effective manner.  Thus, these systems must 

remain supportable over the extended life cycle.  

An important component of supportability analysis 

includes identification and anticipation of 

degraders to readiness.  These degraders include 

high failure items, long lead times (both in terms of 

repair and logistics) as well as potential manpower 

constraints.   

Predictive analytics and prognostic models 

provide powerful decision capability to the Army 

and Marine Corps.  Understanding and anticipating 

degraders to readiness can be seen as a risk 

assessment and mitigation activity.  A plethora of 

risk assessment methodologies have been proposed 

in literature.  However, several of these approaches, 

such as event trees, require a clear understanding of 

the chain of events (or causal connections) leading 

to a high risk event.  As many accidents have 

shown, identification and quantification of these 
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connections (and associated probabilities) is not 

trivial and is wrought with error and human 

subjectivity.  Equally important is controlling the 

false alarm rate and manpower requirements of 

employed methods.  Predictive tools with high false 

positive rates may still have value in certain 

instances (for example when mitigating high 

consequence failure modes), however typically 

should be controlled in order to retain user 

confidence.  Other qualitative methods such as 

Reliability Centered Maintenance (RCM) typically 

require teams with sufficient domain expertise 

sifting through large amounts of data.  The teams’ 

primary goal is to identifying both the frequency 

and severity of failure modes, along with strategies 

to either prevent failures or mitigate the 

consequences.  This poses a resource challenge 

which will only be exasperated as the proliferation 

of Big Data continues.  These methods likely also 

include significant bias, subjectivity and frequently 

utilize simplistic metrics such as Mean Time 

Between Failure (MTBF).  Probability distributions 

may also be fit to repair, delay or failure times – 

however extensive data manipulation is still 

required.  Metrics may also be lagging indicators, 

which reduce the utility of the model or analysis. 

The term machine learning was originally coined 

in 1959 by Arthur Samuel, predicated on the notion 

that computers can have the ability to learn without 

requiring explicit programming.  Thus, computers 

can utilize input data sets and identify patterns or 

predict outcomes.  This field has been applied to a 

vast array of domains to include radar systems, 

image processing and signal detection.   

Machine learning methods have several benefits 

to include the capability to learn classification rules 

automatically, handle large amounts of data in real 

time, and allow integration of quantitative and 

qualitative variables within a single model.  

Additionally, once the model is validated and 

verified, new data sets can be provided as inputs 

allowing statistical inference or prediction to be 

performed.   

Bayesian networks are a subclass of probability-

based learning methods.  Probability-based 

methods describe causality between features along 

with associated probabilities.  The overall concept 

is provided in Figure 1.  First, a predictive model 

must be developed which consists of utilizing a 

training set to first learn the associated Bayesian 

Network structure, followed by quantification of 

the various conditional probabilities within the 

network.  The training data set consists of 

descriptive features and a target feature.  The 

features can both be numerical and categorical.  

Sensitivity analysis is performed in order to further 

validate the model during this phase.  Once a 

validated prediction model is established, evidence 

can be set within the model based on real-time 

updates. 

 

 
Figure 1:  Model Development and Updating Process 

 
PREDICTION AND CAUSAL 
EXPLANATION 

Models are utilized both for causal explanation 

and prediction.  Additionally, in many applications 

the assumption is made that a model that has high 

explanatory power is predictive in nature.  

Explanatory modeling allows “testing causal 

hypotheses about theoretical constructs” [1], while 

predictive models are focused on application of 

statistical or data mining methods to predict new or 

future observations.   

Prediction has gained momentum both in the 

academic and practical communities.  According to 



UNCLASSIFIED 

Proceedings of the 2017 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Utilizing Bayesian networks to develop real time prognostic models for ground vehicles, Banghart, et al. 

UNCLASSIFIED 

Page 3 of 8 

Shmueli [1] prediction has several key attributes to 

include: (1) large and rich datasets contain complex 

patterns and relationships that cannot be 

hypothesized easily, (2) predictive modeling closes 

the gap between theory and practice, (3) predictive 

power can be assessed and benchmarking can be 

employed. 

According to Shmueli [1] care must be taken to 

distinguish between explanatory and predictive 

models, since the type of uncertainty associated 

with each differs.  The disparity stems from several 

fundamental philosophical differences between 

these techniques.  First, in explanatory modeling 

we aim to identify variables that result in a state 

change of another variable.  Exploratory models 

further aim to develop a function, f that tests an 

already known set of hypotheses.  Predictive 

modeling does not require causality, but rather 

considers the association between X and Y.  

Additionally, prediction  develop f with the goal of 

predicting unknown observations, versus 

minimizing bias, or the error between predicted and 

actual observations alone.  All models include 

error, which does not necessarily reduce predictive 

power.  Thus, as stated by Shmueli [1], “wrong” 

models may sometimes have greater predictive 

power than correct models. 
 

FIELD DATA UNCERTAINTY 
Field data typically contains significant error both 

in commercial and military applications [2].  

Additionally, qualitative estimates within risk 

management tools such as Failure Modes Effects 

Analysis (FMEA) has also been shown to contain 

error [3, 4]. 

Conducting sensitivity analysis is critical to both 

assess the potential impact of input errors along 

with which variables are most important within a 

constructed model in terms of output metrics.  In 

the case of Bayesian Networks we are interested in 

how errors within the training data set may 

influence the constructed model.  More 

specifically, we are interested in how output 

decisions change when noise (or error) is 

purposefully introduced within the training data set.   

Previous research by Banghart et al. [5] illustrated 

that Bayesian Networks are resistant to noise.  They 

demonstrated model credibility by investigating 

model response utilizing a Design of Experiments 

(DOE) study.  The research indicated that Bayesian 

networks appear to be robust against noise – 

however not for all target features.  In some high 

noise cases, the results were drastically impacted.  

However, the results indicated under low levels of 

noise the impact was minimal.  These results are 

important and provide credence to utilization of 

Bayesian Networks in real field data – which will 

always contain noise or error that is not easily 

quantified.  The researchers are not proposing that 

“garbage noisy data” can construct Bayesian 

Networks with high predictive power, or that due 

diligence should not be performed in terms of 

design of measurement systems.  However, 

Bayesian Networks may be appropriate even in 

noisy data sets, where the error cannot be easily 

quantified – assuming a robust sensitivity analysis 

is performed [5]. 

 
RESEARCH METHOD 

Bayesian networks can be defined utilizing 

several methods.  Some of the major methods found 

within the literature include heuristic search and 

utilization of expert opinion.  Heuristic “score-and-

search” techniques dominate the literature and can 

be used to learn both the underlying topology of the 

network as well as the link probability, or 

conditional probability tables (CPTs).  In a broad 

sense these algorithms consider a search space 

which contains all the feasible solutions or states of 

the problem, utilize a mechanism to both encode 

these states and move from state to state within the 

search space.  Finally, a scoring function is utilized 

to assign a score to a state within the search space.  

Heuristic methods include K2, genetic algorithms, 

simulated annealing and tabu search [6].  Based on 

previous research conducted by Banghart et al. tabu 
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search has been illustrated as a viable method to 

predict readiness on Navy aircraft [7]. 

 
Tabu Search 
The tabu search (TS) algorithm is deterministic in 

its basic form.  TS works on the principle of 

identifying improved solutions within a specific 

neighborhood through local search.  The algorithm 

utilizes a tabu list in order to allow “worse” moves.  

If the move has not been executed before (and thus 

on the tabu list), the algorithm may evaluate it as a 

feasible solution.  This allows the algorithm to be 

less susceptible to local optimum traps [8].  

Other methods such as the hill climber algorithm 

can have difficulty in certain solution topographies.  

For example, if the solution space is fairly “flat”, 

the hill climber algorithm wouldn’t advance 

beyond the first local optimum found.  The tabu list 

allows the TS algorithm to escape these local 

optimums and are thus well suited to complex 

solution spaces. 

TS is employed in order to identify the optimum 

Bayesian network structure.  We define the 

structure by adding or removing arcs within the 

network and evaluating an objective function.   

When constructing a Bayesian network, we aim to 

find an optimal network structure.  Let S represent 

a set of moves that lead from one solution to 

another.  These moves can consist of adding, 

removing or reversing arcs within the Bayesian 

Network [9].  The complete pseudocode is 

provided below for reference. 
 

𝑩𝒆𝒈𝒊𝒏 

𝑡 ← 0; 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑎𝑏𝑢 𝑠𝑒𝑎𝑟𝑐ℎ; 

𝑾𝒉𝒊𝒍𝒆 (𝑡 < 𝑡𝑚𝑎𝑥) 𝒅𝒐 

𝑡 ← 𝑡 + 1; 

𝑆𝑒𝑎𝑟𝑐ℎ 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑; 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠; 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡; 

𝑬𝒏𝒅 

𝑬𝒏𝒅 

 

Network quality can be evaluated utilizing several 

difference score metrics.  The reader is referred to 

Yang and Chang for a detailed discussion of the 

available metrics [10].   

One benefit of tabu search is that it typically 

proceeds very aggressively (when compared to 

other techniques) to a local optimum.  This is in part 

because tabu search spends more time/effort in 

areas of the solution space where solutions are 

better [11].  Additionally, tabu search can be 

stopped at any time once a feasible solution is 

found [12].  Several of these advantages are related 

to the utilization of memory structures allowing the 

solution space to be searched more economically.  

One drawback of tabu search is that the length of 

the tabu list may not be trivial to determine.  

Specifically, the length of this list allows a trade-

off between the computational burden and 

algorithm efficiency.   

 
Estimating Link Probability 
Once the structure of the network has been 

defined the CPTs can be calculated.  A simple 

estimator can be used to compute the relative 

frequencies in the training data set.   

Given a training data set of and an associated 

Bayesian Network we wish to estimate the CPTs 

for each node (Figure 2).

 
Figure 2:  Example Data Set and Model for CPT calculation 

Utilizing the temperature node as an example, we 

note that both play and outlook are connected to 

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

Data Set

Play

Humidity

Windy

Outlook

Temperature
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temperature.  The conditional probability of 

P(temperature=hot|play=yes,outlook=sunny) can 

be calculated as follows.   

First, note in the original data set there are no 

instances where the temperature=hot, 

outlook=sunny and play=yes.  There were two 

instances of play=yes and outlook=sunny.  In order 

to avoid the problem of no training samples for a 

specific class we apply the Laplacian correction.  

The correction assumes that our training data 

sample is large and is commonly applied in 

machine learning [13].  Thus, we calculate the 

probability: 

 
P(temperature = hot|play = yes, outlook = sunny)

= (0 + 1)/(2 + 3) = 1/5 = 0.2 

 
We repeat this process in order to build the 

complete conditional probability tables for each 

feature. 

 
CASE STUDY 

In order to illustrate our approach we developed a 

generic ground vehicle case study.  Consider a 

ground vehicle data set that includes failures from 

three components (power pack, electronic module 

and software).  Each component exhibits three 

failures modes with random failure times.  

Although the data set was generated for this 

analysis, the approach has been illustrated on actual 

field data of military systems [7]. 
 

Data Set Description 
Failure times were generated assuming Weibull 

distributions with varying slope parameters.  Delay 

and repair times were generated assuming a 

lognormal distribution.  Work centers were 

assigned based on the respective component.  

Failure of components were considered equally 

likely.  Finally, failure modes and cost were 

assigned based on the scheme defined in Table 1.  

 
 

 

 

Table 1:  Input Parameters for Derived Data Set 

 
Component Failure 

Mode 

Failure 

Mode 

Ratio 

Assumed 

Cost 

Assumed 

Mean 

Repair 

Time 

Electronic 

Module 

A 0.5 HIGH 2 hours 

B 0.4 MEDIUM 

C 0.1 LOW 

Engine D 0.3 MEDIUM 6 hours 

E 0.3 HIGH 

F 0.4 MEDIUM 

Software G 0.9 LOW 3 hours 

H 0.05 LOW 

I 0.05 HIGH 

 

In order to visualize the variability and the 
underlying distributions for each quantitative 

variable boxplots are provided in Figure 3 by 

component.  Non Mission Capable (NMC) hour 

values were calculated by the summation of repair 

time, logistics delay, administrative delay and 

maintenance delay time.  Repair times were 

typically short, however very long repair times 

were observed in the data set.  The quantitative 

variables were converted to a nominal scale of 

LOW, MEDIUM, HIGH and VERY HIGH.  The 

scale was determined by splitting each variable into 

four equal proportions based on the Interquartile 

Range. 

16
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SoftwarePowerpackElectronic Module
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SoftwarePowerpackElectronic Module

2.4

1.8

1.2

0.6

0.0

16000
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8000

4000

0

Logistics Delay Time
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15240.1
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Figure 3:  Quantitative Feature Distributions 

Thus, the processed data set consisted of 10 

features and a sample size of 464 instances. 
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Visualization of the potential relationships 

between features is important in predictive 

modeling.  Specifically, if a strong relationship can 

be observed between variables complex machine 

learning models may not be needed and the analysis 

can utilize a regression based model instead.  

Additionally, features may be redundant if a strong 

relationship exists and thus be excluded from the 

predictive model.  There did not appear to be a 

significant linear relationship between the 

descriptive features.   
 

Results and Discussion 
Tabu search yielded a Bayesian Network 

provided in Figure 4.  The network indicated 

several interesting probabilistic relationships 

between NMC hours and repair time, failure time, 

logistics delay, administrative delay as well as the 

work center.  Additionally, relationships were 

observed between the component and failure mode.   

 
Figure 4:  Bayesian Network for a Generic Ground Vehicle 

The results indicated that 86.4 percent of 

instances were correctly classified with a kappa 

statistics of 0.82 when the target feature was set to 

NMC hours.  The kappa statistics provides a 

measure indicating the statistical significant of the 

algorithm.  A high kappa indicates the algorithm 

results are not due to chance alone.  The kappa 

statistic can range from 0 to 1, with a statistic 

greater than 0.75 considered excellent.  The 

calculated kappa supported that the algorithm had 

significant predictive power.  True Positive (TP) 

and False Positive (FP) rates were also calculated.  

The weighted average true positive rate was 86.4 

percent, and associated false positive rate was 4.5 

percent.  These results further indicated the power 

of the algorithm when predicting NMC hours.   

The target feature was also set to failure mode, 

since understanding the likelihood of a specific 

failure mode occurring significantly benefits the 

decision maker.  Specifically, resources can be 

proactively provided in terms of both manpower, 

spares and repair supplies in order to reduce the 

NMC impact.  The algorithm achieved an 87.9 

percent correctly classified instances with a kappa 

statistic of 0.85 when the target feature was set to 

Failure Mode.  TP and FP rates were 87.9 and 1.7 

percent respectively. 
  

Probability of High NMC Hours 
In order to illustrate the practical application of 

the developed Bayesian Network, consider 

calculation of the joint probability of NMC hours 

being either VERY HIGH or LOW given various 

states of other variables.  For example, consider the 

case of the electronic module.  Let’s assume that 

due to several supply chain problems we expect 

long delays in acquiring this component.  We can 

assess the impact on NMC Hours by setting the 

states of ADT, LDT and MDT to VERY HIGH and 

observing the joint probability that NMC hours will 

be VERY HIGH.  We obtain the following joint 

probabilities: 

 NMC hours MEDIUM 62.2 percent 

 NMC hours HIGH 23.2 percent 

 NMC hours VERY HIGH 5.3 percent 

We can consider similar scenarios for other 

feature states.  For example considering the same 

scenario for power pack we calculate the following 

joint probabilities: 

 NMC hours MEDIUM 12.3 percent 

 NMC hours HIGH 17.5 percent 

 NMC hours VERY HIGH 68.7 percent 

NMC Hours

Failure 
Time

Cost

Failure 
Mode

Component

Workcenter

LDT Hours

Repair Time

MDT Hours

ADT Hours

Bayesian Network Parameters:

Training Data Set Size: 464 instances
Learning Algorithm:  Tabu Search

Learning Algorithm Parameters:

Init as Naïve Bayes:  True
Max Number of Parents:  2
Number of Iterations (runs):  15
Tabu List Size:  10
Score Type:  Bayes
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Thus, we conclude that supply chain delays 

relative to the power pack will impact NMC hours 

to a much greater extent than the electronic module. 

 
Incorporation of Real-Time Evidence 
As illustrated in the previous example the 

developed Bayesian Network can be utilized to 

perform predictions, or what-if scenarios.  The 

main output of interest is how the calculated joint 

probability changes as evidence is set. 

In order to incorporate the method into a real time 

monitoring system two additional challenges must 

be overcome.   

First, an architecture must be designed that allows 

the decision maker to easily perform 

aforementioned trade studies.  Business rules must 

be developed and tailored to each program to help 

facilitate decision making.  Additionally, the 

architecture should automate calculation of the 

joint probability given evidence and alert the 

decision maker as appropriate.   

Second, mechanisms to set evidence from 

updated field data must be developed to include 

consideration of strategies to ensure the Bayesian 

Network remains validated. 
 
 

CONCLUSION AND FUTURE WORK 
The capability to accurately predict military 

readiness in complex engineering systems provides 

an important decision tool.  Additionally, 

quantification of the performance parameters of 

such a tool, to include false positive and true 

positive rates, is critical to ensure credibility.  

Development of these predictive, or prognostic 

tools is challenging.  Two broad categories have 

been utilized. The first method utilizes system 

design knowledge in order to understand system 

operation, define features to measure and apply 

some type of measurement device.  A second 

method utilizes data already collected, applies 

advanced algorithms and attempts to predict an 

outcome based on a known training data set.  The 

research performed utilized machine learning 

algorithms (such as Bayesian Networks) and a data 

set representative of military field data.  The 

research yielded a predictive method that was able 

to predict the probability of large amounts of 

downtime given several scenarios.  Thus, the 

analysis provides a framework that can be applied 

to ground vehicle data sets in order to provide 

robust decision making tools, reduce risk and 

improve readiness. 
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